Practice Tests Set 24 - Paper 1H mark scheme

Qn	Working	Answer	Mark	Notes	
2 (b) (i)	$\begin{aligned} & \operatorname{eg}(y \pm 6)(y \pm 3) \text { or } \\ & y(y+3)-6(y+3) \text { or } \\ & y(y-6)+3(y-6) \\ & \hline \end{aligned}$		2	M1	or $(y+a)(y+b)$ where $a b=-18$ or $a+b=-3$ or factorisation which expands to give 2 out of 3 correct terms
	[allow use of x rather than y]	$(y-6)(y+3)$		A1	
(ii)		$6,-3$	1	B1	$\mathrm{ft} \mathrm{must} \mathrm{come} \mathrm{from} \mathrm{their} \mathrm{factors} \mathrm{in} \mathrm{(b)(i)}$
					Total 3 marks

Practice Tests Set 24 - Paper 1H mark scheme

Qn	Working								Answer	Mark		Notes
3	x	-2	-1	0	1	2	3	4	Correct line	3	B3	for a correct line between
	崖	10	7.5	5	2.5	0	-2.5	-5				$x=-2$ and $x=4$
												If not B3 then award B2 for a line segment through at least 3 of $\begin{aligned} & (-2,10),(-1,7.5),(0,5),(1,2.5),(2,0), \\ & (3,-2.5),(4,-5) \end{aligned}$ or all points plotted correctly
												If not B 2 then award B 1 for at least 2 correct points plotted or stated (may be seen in a table) or for a line drawn with a negative gradient through $(0,5)$ or for a line with a gradient of -2.5
												Total 3 marks

Qn	Working	Answer	Mark	Notes
$\mathbf{4}$ (a)		2	1	B1
(b)		$8 a^{3}$	2	B2 for $8 a^{3}$
				If not B2 then B1 for $8 a^{k}$ where $k \neq 3$ or $k a^{3}$ where $k \neq 8$
				Total 3 marks

Practice Tests Set 24 - Paper 1H mark scheme

Qn	Working	Answer	Mark	Notes
$\mathbf{5}$ (a)		$3 c^{2}\left(6 c d^{2}-7\right)$	2	B2fully correct or B1 for a correct partial factorisation with at least two terms outside the bracket ie $3 c\left(6 c^{2} d^{2}-7 c\right)$ or $c^{2}\left(18 c d^{2}-21\right)$
			or the fully correct factor outside the bracket with two terms inside the bracket and at most one mistake $3 c^{2}(\ldots) ~$.	

Qn	Working	Answer	Mark	Notes
$\mathbf{6}$		$(x=) 3$	3	B1
		$(y=) 6$		B1
		$(z=) 10$		B1

Practice Tests Set 24 - Paper 1H mark scheme

Qn	Working	Answer	Mark	Notes
$\mathbf{8}$	$2^{-4 x}=2^{5}$ or $-4 x=5$ or $-\frac{4}{5} x=1$ oe	2	M1	
	Correct answer scores full marks (unless from obvious incorrect working)	$-\frac{5}{4}$		A1 oe allow eg $\frac{5}{-4}$

Practice Tests Set 24 - Paper 1H mark scheme

Qn	Working	Answer	Mark	Notes
$\mathbf{9}$ (a)		0.0000932	1	B1
	(b)		2.4×10^{5}	2
B2 \quadIf not B2, then B1 for 240 or 24×10^{4} oe or $2.4 \times 10^{a} \quad a \neq 5$				
	(c)		1.8×10^{121}	2
(c) B2	If not B2, then B1 for 18×10^{120} or $1.8 \times 10^{b} \quad b \neq 121$			
				Total 5 marks

Qn	Working	Answer	Mark	Notes	
10	$\text { eg } \frac{14}{3} \text { and } \frac{11}{6}$		3		for both mixed numbers expressed as improper fractions
	$\text { eg } \frac{14}{3} \times \frac{6}{11} \text { or } \frac{28}{6} \div \frac{11}{6} \text { or } \frac{28 n}{6 n} \div \frac{11 n}{6 n}$			M1	seeing this stage gains M2
	eg $\frac{14}{3} \times \frac{6}{11}=\frac{84}{33}=\frac{28}{11}=2 \frac{6}{11}$ or $\frac{14}{3} \times \frac{6}{11}=\frac{84}{33}=2 \frac{18}{33}=2 \frac{6}{11}$ or $\frac{14}{\mathcal{H}^{1}} \times \frac{6^{2}}{11}=\frac{28}{11}=2 \frac{6}{11}$ or $\frac{14}{3} \div \frac{11}{6}=\frac{28}{6} \div \frac{11}{6}=\frac{28}{11}=2 \frac{6}{11}$ or correct working to $\frac{28}{11}$ and writing $2 \frac{6}{11}=\frac{28}{11}$ Working required	Shown		A1	dep on M2 for conclusion to $2 \frac{6}{11}$ from correct working - either sight of result of multiplication eg $\frac{84}{33}$ must be seen or correct cancelling to $\frac{28}{11}$ or complete method using division and common denominators
					Total 3 marks

Practice Tests Set 24 - Paper 1H mark scheme

$\left.\begin{array}{|c|l|c|c|c|}\hline \text { Qn } & \text { Working } & \text { Answer } & \text { Mark } & \text { Notes } \\ \hline \mathbf{1 1} \text { (a) } & & \begin{array}{c}\text { Triangle drawn at } \\ (-1,-3)(-1,-4)(-3,-3)\end{array} & 2 & \text { B2 } \begin{array}{l}\text { for a correct triangle with correct } \\ \text { orientation and position }\end{array} \\ \text { If not B2 then award B1 for a } \\ \text { correct triangle drawn with correct } \\ \text { orientation in wrong position or } \\ \text { triangle drawn with 2 out of 3 } \\ \text { correct vertices }\end{array}\right]$

Practice Tests Set 24 - Paper 1H mark scheme

Practice Tests Set 24 - Paper 1H mark scheme

Qn	Working	Answer	Mark	Notes
$\mathbf{1 3}$	eg $-\binom{-5}{4}+\binom{9}{1}$ or $\binom{5}{-4}+\binom{9}{1}$ or $\binom{14}{a} a \neq-3$ or $\binom{b}{-3} b \neq 14$		2	M1 or an answer of $\binom{-14}{3}$
	Correct answer scores full marks (unless from obvious incorrect working)	$\binom{14}{-3}$		A1
				Total 2 marks

Qn	Working	Answer	Mark	Notes
$\mathbf{1 4}$ (a)		$-3,-2,-1,0,1$	2	B2 for $-3,-2,-1,0,1$
				If not B2 then award B1 for 4 correct values and no incorrect values (eg $-3,-2,-1,0)$ or for 6 values with no more than one incorrect value (eg $-4,-3,-2,-1,0,1)$

Practice Tests Set 24 - Paper 1H mark scheme

Qn	Working	Answer	$\frac{\text { Mark }}{2}$	Notes	
16	$\begin{aligned} \text { eg } 10000 x & =3818.18 \ldots- \\ 100 x & =38.18 \ldots \end{aligned}$ or $1000 x=381.818 \ldots$. \qquad or 1 $\begin{aligned} 100 x & =38.1818 \ldots \\ x & =0.3818 \ldots \end{aligned}$ oe			M1	For selecting 2 correct recurring decimals that when subtracted give a whole number or terminating decimal (37.8 or 378 or 3780 etc) eg $10000 x=3818.18 \ldots$ and $100 x=38.1818 \ldots$. or $1000 x=381.818 \ldots$ and $10 x=3.81818 \ldots$ or $100 x=38.1818 \ldots$ and $x=0.381818 \ldots$ with intention to subtract. (if recurring dots not shown then showing at least one of the numbers to at least 5 sf) or $0.38+0.00 \ddot{18}$ and eg $100 x=0.1818 \ldots, 10000 x=18.1818 \ldots$ with intention to subtract.
	$\begin{aligned} & \text { eg } 10000 x-100 x=3818.18 \ldots-38.1818 \ldots=3780 \\ & (9900 x=3780) \text { and } \frac{3780}{9900}=\frac{21}{55} \end{aligned}$ or eg 1000x-10x $=381.818 \ldots-3.81818 \ldots=378$ $(990 x=378) \text { and } \frac{378}{990}=\frac{21}{55}$ or eg $100 x-x=38.1818 \ldots-0.381818 \ldots=37.8$ $(99 x=37.8)$ and $\frac{37.8}{99}=\frac{21}{55}$ or eg $10000 x-100 x=18.1818 \ldots-0.181818 \ldots=18$ and $0.38+\frac{18}{9900}=\frac{38 \times 99+18}{9900}=\frac{3780}{9900}=\frac{21}{55} \mathrm{oe}$	shown			for completion to $\frac{21}{55}$ dep on M1 (NB: this is a "use algebra to show that..." question, so we need to see algebra as well as seeing all the stages of working to award full marks)
					Total 2 marks

Practice Tests Set 24 - Paper 1H mark scheme

Qn	Working	Answer	Mark	Notes	
18	$\begin{aligned} & \operatorname{eg} 2 n, 2 n+2,2 n+4 \\ & \text { or } 2 n-2,2 n, 2 n+2 \text { etc } \end{aligned}$		3	M1	for 3 consecutive even numbers in algebraic form (any letter can be used)
	eg $(2 n)^{2}+(2 n+4)^{2}\left(=4 n^{2}+4 n^{2}+16 n+16=8 n^{2}+16 n+16\right)$ or $2(2 n+2)^{2}\left(=2\left(4 n^{2}+8 n+4\right)=8 n^{2}+16 n+8\right)$ or $2(2 n+2)^{2}+8\left(=2\left(4 n^{2}+8 n+4\right)+8=8 n^{2}+16 n+16\right)$				for the sum of the squares of the largest and smallest even numbers and adding or the square of the middle even number multiplied by 2 (no need to expand or simplify for this mark)
	$\operatorname{eg}(2 n)^{2}+(2 n+4)^{2}=8 n^{2}+16 n+16$ and $2(2 n+2)^{2}+8=8 n^{2}+16 n+16$ or $(2 n)^{2}+(2 n+4)^{2}=8 n^{2}+16 n+16$ and $2(2 n+2)^{2}=8 n^{2}+16 n+8$ and $8 n^{2}+16 n+16-\left(8 n^{2}+16 n+8\right)=8$ or $(2 n)^{2}+(2 n+4)^{2}=8 n^{2}+16 n+16$ and $8 n^{2}+16 n+16=8 n^{2}+16 n+8+8=2(2 n+2)^{2}+8$ or $\begin{aligned} & 2(2 n+2)^{2}+8=8 n^{2}+16 n+16 \text { and } \\ & 8 n^{2}+16 n+16=4 n^{2}+4 n^{2}+16 n+16=(2 n)^{2}+(2 n+4)^{2} \end{aligned}$ Working required	Correctly shown			dep on M2 for use of algebra to show correct conclusion (SCB1 for eg $(p+4)^{2}+p^{2}$ or $2(p+2)^{2}$ or $\left.2(p+2)^{2}+8\right)$ (SCB2 for use of $\operatorname{eg}(p+4)^{2}+p^{2}=2 p^{2}+8 p+16$ and $2(p+2)^{2}+8=2 p^{2}+8 p+16$ If the student shows this and also says "it is true for all numbers, so it must be true for even numbers" oe or defines $p, p+2, p+4$ as even numbers, then this would gain M2A1
					Total 3 marks

Practice Tests Set 24 - Paper 1H mark scheme

Qn	Working	Answer	Mark	Notes	
19	$\sqrt{3} x-x=6+2 \sqrt{3} \text { oe or } x-x \sqrt{3}=-6-2 \sqrt{3}$ (allow $-2 \sqrt{9}$ or $-2(\sqrt{3})^{2}$ for -6 or $2 \sqrt{9}$ or $2(\sqrt{3})^{2}$ for 6)		4	M1	expanding bracket and collecting terms. Condone one error
	$(x=) \frac{6+2 \sqrt{3}}{\sqrt{3}-1} \text { oe eg } \frac{-6-2 \sqrt{3}}{1-\sqrt{3}}$			A1	oe must be a correct fraction with irrational numerator and denominator
	$(x=) \frac{(6+2 \sqrt{3})}{(\sqrt{3}-1)} \times \frac{(\sqrt{3}+1)}{(\sqrt{3}+1)}$ or $\frac{(6+2 \sqrt{3})(\sqrt{3}+1)}{2}$ oe or $\frac{(6+2 \sqrt{3})}{(-1+\sqrt{3})} \times \frac{(-1-\sqrt{3})}{(-1-\sqrt{3})}$ oe or $\frac{(-6-2 \sqrt{3})(1+\sqrt{3})}{(1-\sqrt{3})(1+\sqrt{3})}$ oe			M1	(indep) Multiplying the numerator and denominator of their fraction by $\sqrt{3}+1$ oe or showing 2 or -2 as the denominator and multiplying the numerator by $\sqrt{3}+1$ oe or rationalising their denominator, so long as it is of the form $p+q \sqrt{3}$ where p and q are non zero integers (condone missing brackets provided meaning is clear)
	Working required	$6+4 \sqrt{3}$		A1	dep on M1A1M1 with no errors seen
					Total 4 marks

Practice Tests Set 24 - Paper 1H mark scheme

Qn	Working	Answer			Notes
20	$\begin{aligned} & \text { eg } \frac{(4 x+3)(x-5)}{2 x-1} \times \frac{(2 x-1)(x-3)}{(x+5)(x-5)} \\ & \text { or eg } \frac{(4 x+3)(x-3)}{x+5}(+(29-4 x)) \end{aligned}$		4	M2	for factorising at least 2 of the quadratics correctly - could be implied by 2 factors cancelled correctly (M1 for factorising at least 1 of the 3 quadratics correctly)
	$\begin{aligned} & \text { eg } \frac{(4 x+3)(x-3)+(29-4 x)(x+5)}{x+5} \text { oe } \\ & \text { or eg } \frac{4 x^{2}-9 x-9+145+9 x-4 x^{2}}{x+5} \text { oe } \end{aligned}$			M1	for writing the correct fractions over a common denominator of $(x+5)$ with or without brackets removed - need not be in simplest form. Could be written as 2 separate fractions.
	Correct answer scores full marks (unless from obvious incorrect working)	$\frac{136}{x+5}$		A1	
					Total 4 marks

Practice Tests Set 24 - Paper 1H mark scheme

Qn	Working	Answer	Mark		Notes	
$21 \text { (a) }$	$P=\frac{k}{y^{2}}$		3	M1	oe (the constant term, k, can be any other letter apart from a or P or y)	
	eg $a=\frac{k}{4^{2}}$ or $k=16 a$ Cor a			M1	oe	
	Correct answer scores full marks (unless from obvious incorrect working)	$P=\frac{16 a}{y^{2}}$		A1	$\text { oe eg } P=16 a y^{-2} \text { or } P=\frac{4^{2} a}{y^{2}}$	
(b)	$\sqrt{{ }^{\frac{16 a}{4 a}} "}=c \sqrt{a}$ oe eg $\frac{16 a}{4 a}=c^{2} a$ or $4 a=\frac{16 a}{c^{2} a}$ or $4 a \times c^{2} a=16 a$ oe or (when $P=4 a) y^{2}=\frac{16 a}{4 a}$ or $y^{2}=4$ or $y=\sqrt{\frac{16 a}{4 a}}(=2)$ oe			3		ft a correct formula involving the constant term (c used here) and a or ft for an expression or value of y^{2} or y given for when $P=4 a$
	$c=\sqrt{\frac{4}{a}}$ or $c=\frac{ \pm 2}{\sqrt{a}}$ or $c=\frac{ \pm 2 \sqrt{a}}{a}$ oe allow the constant term squared eg $c^{2}=\frac{16 a}{4 a^{2}}\left(=\frac{4}{a}\right)$			M	(implies previous M1) a correct value, in terms of a, for the constant term or the constant term squared need not be simplified	
	Correct answer scores full marks (unless from obvious incorrect working)	$P=\frac{4 a^{2}}{x}$			oe eg $P=\frac{16 a}{4 x}$ or $P=\frac{16 a^{2}}{4 x}$	
					Total 6 marks	

Practice Tests Set 24 - Paper 1H mark scheme

Qn	Working	Answer	Mark		Notes
22 (a)	$\overrightarrow{O N}=\mathbf{b}+\frac{2}{5}(\mathbf{a}-\mathbf{b}) \text { oe or } \overrightarrow{O N}=\mathbf{a}+\frac{3}{5}(\mathbf{b}-\mathbf{a}) \mathrm{oe}$		2	M	
	Correct answer scores full marks (unless from obvious incorrect working)	$\frac{2}{5} \mathbf{a}+\frac{3}{5} \mathbf{b}$			oe eg $\frac{1}{5}(2 \mathbf{a}+3 \mathbf{b})$ but must be one term in a and one in \mathbf{b}
(b)	$\begin{aligned} & \overrightarrow{M E}=\frac{8}{5} \mathbf{a}-\frac{4}{5} \mathbf{b} \\ & \overrightarrow{N E}=\frac{6}{5} \mathbf{a}-\frac{3}{5} \mathbf{b} \quad \text { (all oe but simplified) } \\ & \overrightarrow{M N}=\frac{2}{5} \mathbf{a}-\frac{1}{5} \mathbf{b} \end{aligned}$		3		for one of $\overrightarrow{M E}, \overrightarrow{N E}$ or $\overrightarrow{M N}$ or one of $\overrightarrow{E M}, \overrightarrow{E N}$ or $\overrightarrow{N M}$ ft (dep on M1 in (a)) their expression for $\overrightarrow{O N}$ for this mark only $\left[\overrightarrow{M E}=\overrightarrow{O N}+\frac{6}{5} \mathbf{a}-\frac{7}{5} \mathbf{b}\right.$ $\left.\overrightarrow{M N}=\overrightarrow{O N}-\frac{4}{5} \mathbf{b}, \overrightarrow{N E}=-\overrightarrow{O N}+\frac{11}{3} \mathbf{a}\right]$
	$\begin{aligned} & \overrightarrow{M E}=\frac{8}{5} \mathbf{a}-\frac{4}{5} \mathbf{b} \\ & \overrightarrow{N E}=\frac{6}{5} \mathbf{a}-\frac{3}{5} \mathbf{b} \quad \text { (all oe but simplified) } \\ & \overrightarrow{M N}=\frac{2}{5} \mathbf{a}-\frac{1}{5} \mathbf{b} \end{aligned}$				for two of $\overrightarrow{M E}, \overrightarrow{N E}$ or $\overrightarrow{M N}$ or two of $\overrightarrow{E M}, \overrightarrow{E N}$ or $\overrightarrow{N M}$ must be correct
	Evidence of a vector method needed	shown			$\begin{aligned} & \text { eg } \overrightarrow{M E}=4 \times \overrightarrow{M N} \text { or } \\ & \overrightarrow{N E}=3 \times \overrightarrow{M N} \text { or } \overrightarrow{M E}=\frac{4}{3} \times \overrightarrow{N E} \end{aligned}$ or showing they are multiples of the same vector eg $\left.\overrightarrow{M N}=\frac{1}{5}(2 \mathbf{a}-\mathbf{b})\right) \text { and } \overrightarrow{N E}=\frac{3}{5}(2 \mathbf{a}-\mathbf{b})$
					Total 5 mark

Practice Tests Set 24 - Paper 1H mark scheme

					Edexcel averages: scores of candidates who achieved grade:								
Qn	Skill tested	Mean score	Max score	$\begin{array}{\|l\|} \hline \text { Mean } \\ \% \end{array}$	ALL	9	8	7	6	5	4	3	U
1	Simultaneous linear equations	2.66	3	89	2.66	2.98	2.92	2.90	2.79	2.47	2.03	1.32	0.54
2	Quadratic equations	2.51	3	84	2.51	2.98	2.94	2.81	2.56	2.19	1.43	0.00	0.00
3	Graphs	2.43	3	81	2.43	2.94	2.87	2.71	2.53	1.93	1.25	0.47	0.13
4	Algebraic manipulation	2.51	3	84	2.51	2.96	2.83	2.64	2.50	2.18	1.61	0.00	0.00
5	Algebraic manipulation	1.59	2	80	1.59	1.96	1.88	1.80	1.53	1.26	0.86	0.49	0.11
6	Statistical measures	2.32	3	77	2.32	2.94	2.82	2.48	2.10	1.65	1.19	0.96	0.60
7	Algebraic manipulation	2.43	3	81	2.43	2.89	2.77	2.69	2.51	2.13	1.37	0.45	0.15
8	Powers and roots	1.48	2	74	1.48	1.95	1.83	1.64	1.40	0.90	0.66	0.19	0.12
9	Standard form	3.94	5	79	3.94	4.77	4.40	4.17	3.76	3.39	2.63	0.00	0.00
10	Fractions	2.39	3	80	2.39	2.72	2.64	2.45	2.39	2.18	1.85	1.25	0.71
11	Transformation geometry	2.01	3	67	2.01	2.80	2.46	2.05	1.65	1.25	0.80	0.00	0.00
12	Algebraic manipulation	3.61	6	60	3.61	5.64	4.73	3.67	2.60	1.47	0.69	0.00	0.00
13	Vectors	1.19	2	60	1.19	1.80	1.56	1.18	0.88	0.63	0.17	0.11	0.05
14	Inequalities	1.92	3	64	1.92	2.68	2.32	1.96	1.68	1.27	0.72	0.00	0.00
15	Quadratic equations	2.81	5	56	2.81	4.55	3.73	2.73	1.92	0.81	0.42	0.05	0.01
16	Applying number	1.12	2	56	1.12	1.69	1.46	1.14	0.86	0.54	0.25	0.09	0.01
17	Graphs	3.67	7	52	3.67	4.50	3.76	3.67	3.53	3.22	3.00	0.00	0.00
18	Algebraic manipulation	1.32	3	44	1.32	2.57	1.81	0.94	0.45	0.14	0.01	0.00	0.00
19	Powers and roots	1.65	4	41	1.65	2.87	1.95	1.53	1.12	0.54	0.17	0.04	0.02
20	Algebraic manipulation	1.66	4	42	1.66	3.22	1.94	1.31	0.81	0.30	0.14	0.03	0.00
21	Ratio and proportion	1.91	6	32	1.91	3.95	2.20	1.35	0.62	0.41	0.07	0.00	0.00
22	Vectors	1.75	5	35	1.75	3.85	2.10	0.91	0.46	0.23	0.02	0.00	0.00
	TOTAL	48.88	80	61	48.88	69.21	57.92	48.73	40.65	31.09	21.34	5.45	2.45

Suggested grade boundaries

Grade	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$
Mark	64	53	45	36	26	14	4

