Qn	Working	Answer	Mark	Notes
1	eg $4x + 8y = 60$ or $3x + 6y = 45$ $-\frac{4x - 6y = 4}{(14y = 56)}$ $+\frac{4x - 6y = 4}{(7x = 49)}$ eg $4x - 6\left(\frac{15 - x}{2}\right) = 4$ or $4(15 - 2y) - 6y = 4$ oe		3	M1 Correct method to eliminate x or y : coefficients of x or y the same and correct operator to eliminate selected variable (condone any one arithmetic error in multiplication) or correctly writing x or y in terms of the other variable and correctly substituting.
	eg $x + 2 \times 4 = 15$ or $7 + 2 \times y = 15$			M1 dep correct method to find second variable using their value from a correct method to find first variable or for repeating above method to find second variable.
	Working required	x = 7, y = 4		A1 dep on M1
				Total 3 marks

Qn		Working	Answer	Mark		Notes
2	(b) (i)	eg $(y \pm 6)(y \pm 3)$ or		2	M1	or $(y + a)(y + b)$ where $ab = -18$ or $a + b = -3$ or
		y(y+3) - 6(y+3) or				factorisation which expands to give 2 out of 3
		y(y-6) + 3(y-6)				correct terms
		[allow use of x rather than y]	(y-6)(y+3)		A1	
	(ii)		6, -3	1	B1	ft must come from their factors in (b)(i)
						Total 3 marks

On	Working	Answer	Mark	Notes
3	x -2 -1 0 1 2 3 4 y 10 7.5 5 2.5 0 -2.5 -5	Correct line	3	B3 for a correct line between x = -2 and $x = 4If not B3 then award B2 for a line segmentthrough at least 3 of(-2, 10), (-1, 7.5), (0, 5), (1, 2.5), (2, 0),(3, -2.5), (4, -5)orall points plotted correctlyIf not B2 then award B1 for at least 2 correctpoints plotted or stated (may be seen in a table)or for a line drawn with a negative gradientthrough (0, 5) or for a line with a gradient of-2.5$
				Total 3 marks

Qn		Working	Answer	Mark	Notes
4	(a)		2	1	B1
	(b)		8 <i>a</i> ³	2	B2 for $8a^3$ If not B2 then B1 for $8a^k$ where $k \neq 3$ or ka^3 where $k \neq 8$
					Total 3 marks

Qn		Working	Answer	Mark		Notes
5	(a)		$3c^2(6cd^2-7)$	2	B2	fully correct or B1 for a correct partial factorisation with at least
						two terms outside the bracket ie $3c(6c^2d^2 - 7c)$ or $c^2(18cd^2 - 21)$
						or the fully correct factor outside the bracket with two terms inside the bracket and at most
						one mistake 3C ⁻ () Total 2 marks

Qn	Working	Answer	Mark	Notes
6		(x =) 3	3	B1
		(y =) 6		B1
		(z=) 10		B1
				Total 3 marks

Qn		Working	Answer	Mark		Notes
7	(c)	$5x(3x + 4) = 15x^{2} + 20x$ or $5x(2x - 1) = 10x^{2} - 5x$ or $(3x + 4)(2x - 1) = 6x^{2} - 3x + 8x - 4$ $(= 6x^{2} + 5x - 4)$		3	M1	for a correct intention to multiply all 3 factors by multiplying 2 factors only, allow one error
		$(15x^{2} + 20x)(2x - 1) = 30x^{3} - 15x^{2} + 40x^{2} - 20x \text{ oe}$ $(10x^{2} - 5x)(3x + 4) = 30x^{3} + 40x^{2} - 15x^{2} - 20x \text{ oe}$ $5x(6x^{2} + 5x - 4) = 30x^{3} + 25x^{2} - 20x \text{ oe}$ $Correct answer scores full marks (unless from obvious incorrect working)$	$30x^3 + 25x^2 - 20x$		M1 A1	(dep)ft for expanding by the third factor, allow one error (some may do the expansion in one stage and will get to $30x^3 - 15x^2 + 40x^2 - 20x$ without firstly expanding two factors – this gains M2, allow one error) isw correct factorisation $(30x^3 + 25x^2 - 20x$ must be seen previously to award 3 marks) eg $5(6x^3 + 5x^2 - 4x)$ $x(30x^2 + 25x - 20)$ $5x(6x^2 + 5x - 4)$ do not isw incorrect simplification eg $30x^3 + 25x^2 - 20x = 6x^3 + 5x^2 - 4x$ gets M2A0
						Total 3 marks

Qn	Working	Answer	Mark	Notes
8	$2^{-4x} = 2^5$ or $-4x = 5$ or $-\frac{4}{5}x = 1$ oe		2	M1
	Correct answer scores full marks (unless from obvious incorrect working)	$-\frac{5}{4}$		A1 oe allow eg $\frac{5}{-4}$
				Total 2 marks

Qn	Working	Answer	Mark	N	Notes
9 (a)		0.000 0932	1	B1	
(b)		2.4×10^{5}	2	B2 It	f not B2, then B1 for 240 000
				0	or 24×10^4 oe or 2.4×10^a $a \neq 5$
(c)		1.8×10^{121}	2	B2 It	f not B2, then B1 for 18×10^{120} or
				1	$.8 \times 10^b \ b \neq 121$
					Total 5 marks

Qn	Working	Answer	Mark	Notes	
10	eg $\frac{14}{3}$ and $\frac{11}{6}$		3	M1	for both mixed numbers expressed as improper fractions
	eg $\frac{14}{3} \times \frac{6}{11}$ or $\frac{28}{6} \div \frac{11}{6}$ or $\frac{28n}{6n} \div \frac{11n}{6n}$			M1	seeing this stage gains M2
	eg $\frac{14}{3} \times \frac{6}{11} = \frac{84}{33} = \frac{28}{11} = 2\frac{6}{11}$ or $\frac{14}{3} \times \frac{6}{11} = \frac{84}{33} = 2\frac{18}{33} = 2\frac{6}{11}$ or $\frac{14}{3} \times \frac{6^2}{11} = \frac{28}{11} = 2\frac{6}{11}$ or $\frac{14}{3} \div \frac{11}{6} = \frac{28}{6} \div \frac{11}{6} = \frac{28}{11} = 2\frac{6}{11}$ or correct working to $\frac{28}{11}$ and writing $2\frac{6}{11} = \frac{28}{11}$	Shown		A1	dep on M2 for conclusion to $2\frac{6}{11}$ from correct working – either sight of result of multiplication eg $\frac{84}{33}$ must be seen or correct cancelling to $\frac{28}{11}$ or complete method using division and common denominators
	Working required				
					Total 3 marks

Qn	Working	Answer	Mark		Notes
11 (a)		Triangle drawn at (-1, -3) (-1, -4) (-3, -3)	2	B2	for a correct triangle with correct orientation and position If not B2 then award B1 for a correct triangle drawn with correct orientation in wrong position or triangle drawn with 2 out of 3 correct vertices
(b)		Triangle drawn at (-4, 4) (-4, 5) (-2, 4)	1	B1	cao
					Total 3 marks

Qn		Working	Answer	Mark		Notes
12	(a)		-0.5	1	B1	oe eg $-\frac{1}{2}, \frac{-1}{2}, \frac{1}{-2}, -\frac{1}{-2}, -\frac{1}{2}$
	(b)	(3x-5)y=2 or $(3y-5)x=2$ or 3xy-5y=2 or $3xy-5x=2$ oe or $3y-5=\frac{2}{x}$ or $3x-5=\frac{2}{y}$ oe		2	M1 :	remove denominator or get to the stage $3y-5 = \frac{2}{x}$ or $3x-5 = \frac{2}{y}$
		Correct answer scores full marks (unless from obvious incorrect working)	$\frac{2+5x}{3x}$		Aloe	eg $\frac{2}{3x} + \frac{5}{3}$ or $\frac{\frac{2}{x} + 5}{3}$ must be in terms of x
	(c)	$5(x^2-4x)$ or $5(x^2-4x)$ or $5(x-2)^2$		3	M1	
		$5\left[\left(x-2\right)^{2}-\left(-2\right)^{2}\right]or 5\left[\left(x-2\right)^{2}-\left(-2\right)^{2}\right]$ or $5(x-2)^{2}-20$ or $5\left[\left(x-2\right)^{2}+\frac{3}{5}\right]$			M1	$(-2)^2$ can be 2^2 or 4 or $\left(\pm\frac{4}{2}\right)^2$
		<i>Correct answer scores full marks (unless from obvious incorrect working)</i>	$5(x-2)^2+3$		A1	
						Total 6 marks
Alterr	native	mark scheme for 12(c)				
		$ax^2 - 2abx + ab^2 + c$		3	M1	for multiplying out $a(x-b)^2 + c$ to obtain $ax^2 - 2abx + ab^2 + c$ oe
		2 of: $a = 5$ $2ab = 20$ oe $ab^2 + c = 23$ oe			M1	for equating coefficients and making 2 correct statements
			$5(x-2)^2+3$		A1	

Qn	Working	Answer	Mark	Notes
13	eg $-\begin{pmatrix} -5\\4 \end{pmatrix} + \begin{pmatrix} 9\\1 \end{pmatrix}$ or $\begin{pmatrix} 5\\-4 \end{pmatrix} + \begin{pmatrix} 9\\1 \end{pmatrix}$ or $\begin{pmatrix} 14\\a \end{pmatrix}$ $a \neq -3$ or $\begin{pmatrix} b\\-3 \end{pmatrix}$ $b \neq 14$ Correct answer scores full marks (unless from obvious incorrect working)	$\begin{pmatrix} 14\\ -3 \end{pmatrix}$	2	$ \begin{array}{c} M1 \\ \text{or an answer of} \begin{pmatrix} -14 \\ 3 \end{pmatrix} \\ \hline A1 \end{array} $
				Total 2 marks

Qn		Working	Answer	Mark		Notes
14	(a)		-3, -2, -1, 0, 1	2	B2	for -3 , -2 , -1 , 0, 1 If not B2 then award B1 for 4 correct values and no incorrect values (eg -3 , -2 , -1 , 0) or for 6 values with no more than one incorrect value (eg -4 , -3 , -2 , -1 , 0, 1)
	(b)		x > -1	1	B1	accept $-1 < x$
						Total 3 marks

Qn	Working		Answer	Μ	[ark	Notes
15	eg 2(-3-2x) ² + x ² = -6x + 42	eg $2y^{2} + \left(\frac{-3-y}{2}\right)^{2} = -6\left(\frac{-3-y}{2}\right) + 42$		5	M1	substitution of $y = \pm 3 \pm 2x$ (or $x = \frac{\pm 3 \pm y}{2}$) into $2y^2 + x^2 = -6x + 42$ to obtain an equation in x only (on y only)
	eg $9x^{2} + 30x - 24(=0)$ or $3x^{2} + 10x - 8(=0)$ allow eg $3x^{2} + 10x = 8$	eg $\frac{9}{4}y^2 - \frac{3}{2}y - \frac{195}{4}(=0)$ or $9y^2 - 6y - 195(=0)$ or $3y^2 - 2y - 65(=0)$ allow eg $3y^2 - 2y = 65$			M1 ft	(dep on previous M1) for multiplying out and collecting terms, forming a three term quadratic in any form of $ax^2 + bx + c (= 0)$ where at least 2 coefficients (<i>a</i> or <i>b</i> or <i>c</i>) are correct
	eg $(3x-2)(x+4)(=0)$ or $\frac{-10\pm\sqrt{10^2-4\times3\times-8}}{2\times3}$ or $3\left[\left(x+\frac{5}{3}\right)^2-\left(\frac{5}{3}\right)^2\right]=8^{06}$ (should give $(x=)\frac{2}{3}, -4$)	eg $(3y+13)(y-5)(=0)$ or $\frac{2\pm\sqrt{(-2)^2-4\times3\times-65}}{2\times3}$ or $3\left[\left(y-\frac{1}{3}\right)^2-\left(\frac{1}{3}\right)^2\right]=650e$ (should give $(y=)-\frac{13}{3}, 5)$			M1 ft	(dep on M1) method to solve their 3 term quadratic using any correct method (allow one sign error and some simplification – allow as far as eg $\frac{-10\pm\sqrt{100+96}}{6}$ or $\frac{2\pm\sqrt{4+780}}{6}$) or if factorising allow brackets which expanded give 2 out of 3 terms correct)or correct values for <i>x</i> (allow 0.66(6) or 0.67) or correct values for <i>y</i> (allow –4.33(3))
	eg $2\left(\frac{2}{3}\right) + y = -3$ and $2\left(-4\right) + y = -3$	eg $2x + "-\frac{13}{3}" = -3$ and $2x + "5" = -3$			M1	(dep on previous M1) for substituting their 2 found values of x or y in a suitable equation (use 2dp or better for substitution) or fully correct values for the other variable (correct labels for x / y)
	Working required	·	x = -4, y = 5 and $x = \frac{2}{3}, y = -\frac{13}{3}$		A1	oe (dep on M1) and a correct quadratic (allow coordinates) allow $x = 0.66(6)$ or 0.67, $y = -4.33(3), x = -4, y = 5$
						Total 5 marks

Qn	Working	Answer	Mark		Notes
16	eg 10 000x = 3818.18 100x = 38.18 or 1000x = 381.818 10x = 3.818 or 100x = 38.1818 x = 0.3818 oe eg 10 000x - 100x = 3818.18 38.1818= 3780 (9900x = 3780) and $\frac{3780}{9900} = \frac{21}{55}$ or eg 1000x - 10x = 381.818 3.81818= 378 (990x = 378) and $\frac{378}{990} = \frac{21}{55}$ or eg 100x - x = 38.1818 0.381818= 37.8 (99x = 37.8) and $\frac{37.8}{99} = \frac{21}{55}$ or eg 10 000x - 100x = 18.1818 0.181818= 18 and $0.38 + \frac{18}{9900} = \frac{38 \times 99 + 18}{9900} = \frac{3780}{9900} = \frac{21}{55}$ oe	shown	2	M1	For selecting 2 correct recurring decimals that when subtracted give a whole number or terminating decimal (37.8 or 378 or 3780 etc) eg 10 000x = 3818.18 and 100x = 38.1818 or 1000x = 381.818 and 10x = 3.81818 or 100x = 38.1818 and x = 0.381818 with intention to subtract. (if recurring dots not shown then showing at least one of the numbers to at least 5 sf) or $0.38 + 0.0018$ and eg 100x = 0.1818, 10000x = 18.1818 with intention to subtract. for completion to $\frac{21}{55}$ dep on M1 (<i>NB: this is a "use algebra to show that"</i> question, so we need to see algebra as well as seeing all the stages of working to award full marks)
					i otal 2 marks

Qn	Working	Answer	Mark	Notes
17 (a)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	B2 0, 2, 4 (B1 for 1 or 2 correct)
(b)		correct curve	2	B2For correct smooth curve. (there is an overlay for the curve – check the line now for (c))If not B2, then B1 for at least 5 points plotted correctly ft from table dep on B1 or B2 in (a)
(c)	$2x^{3}-6x+4 = -3x \text{ or } x^{3}-3x+2 = -\frac{3}{2}x$ or $y = -\frac{3}{2}x$ seen (allow $-\frac{3}{2}x$)		3	M1
	$y = -\frac{3}{2}x$ allow a correct line that intercepts with the curve eg of points on line (0, 0), (-1, 1.5), (-1.5, 2.25), (-2, 3)			M1 a correct line that intercepts with the curve (a correct line drawn implies M2)
	Answer dependent on a correct line being drawn	(x=) -1.6		A1ft accept -1.6 or -1.7 or ft their curve/line intercept dep on a correct line being drawn NB: if y value given as well then M2 only Total 7 marks

Qn	Working	Answer	Mark		Notes
18	eg $2n$, $2n + 2$, $2n + 4$ or $2n - 2$, $2n$, $2n + 2$ etc		3	M1	for 3 consecutive even numbers in algebraic form (any letter can be used)
	eg $(2n)^2 + (2n+4)^2 (= 4n^2 + 4n^2 + 16n + 16 = 8n^2 + 16n + 16)$ or $2(2n+2)^2 (= 2(4n^2 + 8n + 4) = 8n^2 + 16n + 8)$ or $2(2n+2)^2 + 8 (= 2(4n^2 + 8n + 4) + 8 = 8n^2 + 16n + 16)$			M1	for the sum of the squares of the largest and smallest even numbers and adding or the square of the middle even number multiplied by 2 (no need to expand or simplify for this mark)
	eg $(2n)^2 + (2n+4)^2 = 8n^2 + 16n + 16$ and $2(2n+2)^2 + 8 = 8n^2 + 16n + 16$ or $(2n)^2 + (2n+4)^2 = 8n^2 + 16n + 16$ and $2(2n+2)^2 = 8n^2 + 16n + 8$ and $8n^2 + 16n + 16 - (8n^2 + 16n + 8) = 8$ or $(2n)^2 + (2n+4)^2 = 8n^2 + 16n + 16$ and $8n^2 + 16n + 16 = 8n^2 + 16n + 8 + 8 = 2(2n+2)^2 + 8$ or $2(2n+2)^2 + 8 = 8n^2 + 16n + 16$ and $8n^2 + 16n + 16 = 4n^2 + 4n^2 + 16n + 16 = (2n)^2 + (2n+4)^2$ Working required	Correctly shown		A1	dep on M2 for use of algebra to show correct conclusion (SCB1 for eg $(p + 4)^2 + p^2$ or $2(p + 2)^2$ or $2(p + 2)^2 + 8$) (SCB2 for use of eg $(p + 4)^2 + p^2 = 2p^2 + 8p + 16$ and $2(p + 2)^2 + 8 = 2p^2 + 8p + 16$ If the student shows this and also says "it is true for all numbers, so it must be true for even numbers" oe or defines $p, p + 2, p + 4$ as even numbers, then this would gain M2A1
					Total 3 marks

Qn	Working	Answer	Mark		Notes
19	$\sqrt{3}x - x = 6 + 2\sqrt{3}$ or $x - x\sqrt{3} = -6 - 2\sqrt{3}$ (allow $-2\sqrt{9}$ or $-2(\sqrt{3})^2$ for -6 or $2\sqrt{9}$ or $2(\sqrt{3})^2$ for 6)		4	M1	expanding bracket and collecting terms. Condone one error
	$(x=)$ $\frac{6+2\sqrt{3}}{\sqrt{3}-1}$ or $\frac{-6-2\sqrt{3}}{1-\sqrt{3}}$			A1	oe must be a correct fraction with irrational numerator and denominator
	$(x =) \frac{(6+2\sqrt{3})}{(\sqrt{3}-1)} \times \frac{(\sqrt{3}+1)}{(\sqrt{3}+1)} \text{ or } \frac{(6+2\sqrt{3})(\sqrt{3}+1)}{2} \text{ oe or}$ $\frac{(6+2\sqrt{3})}{(-1+\sqrt{3})} \times \frac{(-1-\sqrt{3})}{(-1-\sqrt{3})} \text{ oe or}$ $\frac{(-6-2\sqrt{3})(1+\sqrt{3})}{(1-\sqrt{3})(1+\sqrt{3})} \text{ oe}$			M1	(indep) Multiplying the numerator and denominator of their fraction by $\sqrt{3}+1$ oe or showing 2 or -2 as the denominator and multiplying the numerator by $\sqrt{3}+1$ oe or rationalising their denominator, so long as it is of the form $p+q\sqrt{3}$ where p and q are non zero integers (condone missing brackets provided meaning is clear)
	Working required	$6 + 4\sqrt{3}$		A1	dep on M1A1M1 with no errors seen
					Total 4 marks

Qn	Working	Answer	Mark		Notes
20	eg $\frac{(4x+3)(x-5)}{2x-1} \times \frac{(2x-1)(x-3)}{(x+5)(x-5)}$ or eg $\frac{(4x+3)(x-3)}{x+5}(+(29-4x))$ eg $\frac{(4x+3)(x-3)+(29-4x)(x+5)}{x+5}$ oe or eg $\frac{4x^2-9x-9+145+9x-4x^2}{x+5}$ oe		4	M2	for factorising at least 2 of the quadratics correctly – could be implied by 2 factors cancelled correctly (M1 for factorising at least 1 of the 3 quadratics correctly) for writing the correct fractions over a common denominator of (x + 5) with or without brackets removed – need not be in simplest form. Could be written as 2 separate fractions.
	Correct answer scores full marks (unless from obvious incorrect working)	$\frac{136}{x+5}$		A1	
					Total 4 marks

Qn	Working	Answer	Mark		Notes
21 (a)	$P = \frac{k}{y^2}$		3	M1	oe (the constant term, k , can be any other letter apart from a or P or y)
	eg $a = \frac{k}{4^2}$ or $k = 16a$			M1	oe
	<i>Correct answer scores full marks (unless from obvious incorrect working)</i>	$P = \frac{16a}{y^2}$		A1	oe eg $P = 16ay^{-2}$ or $P = \frac{4^2 a}{y^2}$
(b)	$\sqrt{\frac{16a}{4a}} = c\sqrt{a} \text{ oe eg } \frac{16a}{4a} = c^2 a \text{ or } 4a = \frac{16a}{c^2 a} \text{ or } 4a \times c^2 a = 16a \text{ oe}$ or $(\text{when } P = 4a) y^2 = \frac{16a}{4a} \text{ or } y^2 = 4 \text{ or } y = \sqrt{\frac{16a}{4a}} (=2) \text{ oe}$		3	M1	ft a correct formula involving the constant term (<i>c</i> used here) and <i>a</i> or ft for an expression or value of y^2 or <i>y</i> given for when $P = 4a$
	$c = \sqrt{\frac{4}{a}} \text{ or } c = \frac{\pm 2}{\sqrt{a}} \text{ or } c = \frac{\pm 2\sqrt{a}}{a}$ oe allow the constant term squared eg $c^2 = \frac{16a}{4a^2} \left(= \frac{4}{a} \right)$			M1	(implies previous M1) a correct value, in terms of a , for the constant term or the constant term squared – need not be simplified
	Correct answer scores full marks (unless from obvious incorrect working)	$P = \frac{4a^2}{x}$		A1	oe eg $P = \frac{16a}{\frac{4x}{a}}$ or $P = \frac{16a^2}{4x}$
				[Total 6 marks

Qn	Working	Answer	Mark		Notes
22 (a)	$\overrightarrow{ON} = \mathbf{b} + \frac{2}{5}(\mathbf{a} - \mathbf{b})$ or $\overrightarrow{ON} = \mathbf{a} + \frac{3}{5}(\mathbf{b} - \mathbf{a})$ or		2	M1	
	Correct answer scores full marks (unless from obvious incorrect working)	$\frac{2}{5}\mathbf{a} + \frac{3}{5}\mathbf{b}$		A1	oe eg $\frac{1}{5}(2\mathbf{a}+3\mathbf{b})$ but must be one term in \mathbf{a}
					and one in b
(b)	$\overrightarrow{ME} = \frac{8}{5}\mathbf{a} - \frac{4}{5}\mathbf{b}$ $\overrightarrow{NE} = \frac{6}{5}\mathbf{a} - \frac{3}{5}\mathbf{b}$ (all oe but simplified)		3	M1ft	for one of \overrightarrow{ME} , \overrightarrow{NE} or \overrightarrow{MN} or one of \overrightarrow{EM} , \overrightarrow{EN} or \overrightarrow{NM} ft (dep on M1 in (a)) their expression for \overrightarrow{ON}
	$\overrightarrow{MN} = \frac{2}{5}\mathbf{a} - \frac{1}{5}\mathbf{b}$				for this mark only $[\overline{ME} = \overline{ON} + \frac{6}{5}\mathbf{a} - \frac{7}{5}\mathbf{b}]$ $\overrightarrow{ON} = \overrightarrow{ON} + \frac{4}{5}\mathbf{b} = \overrightarrow{ON} + \frac{11}{5}\mathbf{b}$
					$MIN = OIN - \frac{1}{5}\mathbf{b}, NE = -OIN + \frac{1}{3}\mathbf{a}$
	$\overrightarrow{ME} = \frac{8}{5}\mathbf{a} - \frac{4}{5}\mathbf{b}$ $\overrightarrow{NE} = \frac{6}{5}\mathbf{a} - \frac{3}{5}\mathbf{b}$ (all oe but simplified) $\overrightarrow{MN} = \frac{2}{5}\mathbf{a} - \frac{1}{5}\mathbf{b}$			M1	for two of \overrightarrow{ME} , \overrightarrow{NE} or \overrightarrow{MN} or two of \overrightarrow{EM} , \overrightarrow{EN} or \overrightarrow{NM} must be correct
	Evidence of a vector method needed	shown		A1	eg $\overrightarrow{ME} = 4 \times \overrightarrow{MN}$ or $\overrightarrow{NE} = 3 \times \overrightarrow{MN}$ or $\overrightarrow{ME} = \frac{4}{3} \times \overrightarrow{NE}$ or showing they are multiples of the same vector eg $\overrightarrow{MN} = \frac{1}{5}(2\mathbf{a} - \mathbf{b})$ and $\overrightarrow{NE} = \frac{3}{5}(2\mathbf{a} - \mathbf{b})$
					Total 5 marks

					Edexcel	averages	: scores (of candida	ates who	achieved	grade:		
On	Skill tostod	Mean	Max	Mean		0	9	7	6	5	4	2	
1	Simultaneous linear equations	2.66	SCOLE	/0 80	2.66	2.08	2 02	2 90	2 70	2 47	4 2.03	1 32	0.54
1 2		2.00	3	03	2.00	2.30	2.92	2.30	2.13	2.47	2.00	0.00	0.04
2		2.31	3	04	2.01	2.90	2.94	2.01	2.30	2.19	1.43	0.00	0.00
3	Graphs	2.43	3	81	2.43	2.94	2.87	2.71	2.53	1.93	1.25	0.47	0.13
4	Algebraic manipulation	2.51	3	84	2.51	2.96	2.83	2.64	2.50	2.18	1.61	0.00	0.00
5	Algebraic manipulation	1.59	2	80	1.59	1.96	1.88	1.80	1.53	1.26	0.86	0.49	0.11
6	Statistical measures	2.32	3	77	2.32	2.94	2.82	2.48	2.10	1.65	1.19	0.96	0.60
7	Algebraic manipulation	2.43	3	81	2.43	2.89	2.77	2.69	2.51	2.13	1.37	0.45	0.15
8	Powers and roots	1.48	2	74	1.48	1.95	1.83	1.64	1.40	0.90	0.66	0.19	0.12
9	Standard form	3.94	5	79	3.94	4.77	4.40	4.17	3.76	3.39	2.63	0.00	0.00
10	Fractions	2.39	3	80	2.39	2.72	2.64	2.45	2.39	2.18	1.85	1.25	0.71
11	Transformation geometry	2.01	3	67	2.01	2.80	2.46	2.05	1.65	1.25	0.80	0.00	0.00
12	Algebraic manipulation	3.61	6	60	3.61	5.64	4.73	3.67	2.60	1.47	0.69	0.00	0.00
13	Vectors	1.19	2	60	1.19	1.80	1.56	1.18	0.88	0.63	0.17	0.11	0.05
14	Inequalities	1.92	3	64	1.92	2.68	2.32	1.96	1.68	1.27	0.72	0.00	0.00
15	Quadratic equations	2.81	5	56	2.81	4.55	3.73	2.73	1.92	0.81	0.42	0.05	0.01
16	Applying number	1.12	2	56	1.12	1.69	1.46	1.14	0.86	0.54	0.25	0.09	0.01
17	Graphs	3.67	7	52	3.67	4.50	3.76	3.67	3.53	3.22	3.00	0.00	0.00
18	Algebraic manipulation	1.32	3	44	1.32	2.57	1.81	0.94	0.45	0.14	0.01	0.00	0.00
19	Powers and roots	1.65	4	41	1.65	2.87	1.95	1.53	1.12	0.54	0.17	0.04	0.02
20	Algebraic manipulation	1.66	4	42	1.66	3.22	1.94	1.31	0.81	0.30	0.14	0.03	0.00
21	Ratio and proportion	1.91	6	32	1.91	3.95	2.20	1.35	0.62	0.41	0.07	0.00	0.00
22	Vectors	1.75	5	35	1.75	3.85	2.10	0.91	0.46	0.23	0.02	0.00	0.00
	TOTAL	48.88	80	61	48.88	69.21	57.92	48.73	40.65	31.09	21.34	5.45	2.45

Suggested grade boundaries

Grade	9	8	7	6	5	4	3
Mark	64	53	45	36	26	14	4